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Review and Testing of Entropy Metrics 

Applied to surface Electromyography 

By: Yiyang Shi 

1 Introduction 

Biomedical signals are highly complicated and usually difficult to interpret directly. As the complexity 

of such signals may vary with changes in biological status, entropy can be a useful tool for interpretation. 

Entropy has already been applied in biosignal processing to the assessment of depth of sedation [1], and 

the measurement of the electroencephalographic effects of desflurane [2]. Statistics derived from the 

entropy in dynamic systems are becoming popular in signal processing and are being recommended as 

powerful tools in biomedical signal analysis. Such statistical metrics, including Approximate Entropy, 

Sample Entropy and Fuzzy Entropy, have been applied to various clinical datasets including respiratory 

patterns, heart rate variability, hormone pulsatility, electromyography (EMG), electrocardiography 

(ECG) and electroencephalography (EEG) [3] [4] [5] [6] [7] [8]. 

This paper reviews Shannon Entropy, Approximate Entropy, Sample Entropy and Fuzzy Entropy, to 

determine their efficacy for application to the surface EMG (sEMG) signal. Each metric’s characteristics 

were examined, including the impact of internal parameter selection on each metric. Then these entropy 

metrics were implemented on simulated sEMG to examine metric consistency when applied to sEMG 

records with roughly the same complexity. 

2 Entropy Estimation 

2.1 Shannon Entropy 

Probably the most intuitive way to examine entropy is by introducing it from the perspective of 

information theory.  This was first done comprehensively by Shannon, in his 1948 technical 

communication, “A Mathematical Theory of Communication” [9].  Shannon introduced the concept of 
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‘information size’ in terms of bits required to represent a random variable in a data stream.  He used the 

term ‘entropy’ to represent this ‘size’ and noted that it was inherently related to the uncertainty of the 

data being streamed as described in the equations below: 

In equations 1a-c, 𝑋 represents the random variable being streamed which can take on 𝑁 possible values 

and 𝐻(𝑋) represents entropy.  When the data being streamed is completely certain, its entropy is 

considered to be 0.  When the data being streamed is completely random, that is all possible values for a 

sample are equally probable, its entropy is given by the number of bits required to represent all the 

values in binary
1
 (recall that 𝑛 bits can encode 2𝑛 = 𝑁 distinct values).  The interesting cases take place 

when the probabilities of each possible value are not equal.  When this is true, we know something about 

data stream and this allows us to represent it with less bits.  Its uncertainty decreases, and so does its 

information size.  To quantify this, we can use equation (1b), where 𝑝𝑖 represents the probability of 

occurrence of the i
th

 possibility.  Intuitively, we can think of possibilities that occur regularly as low 

information occurrences (they happen all the time).  Contrastingly, possibilities that occur rarely are 

high information occurrences (when they happen, it is important). Additionally, the high information 

occurrences don’t balance out the low information occurrences because they occur less often in 

comparison.  Thus random variables with unbalanced probabilities are less uncertain yielding lower 

entropy, and lower information sizes. In this paper, the normalized form of 𝐻(𝑋) was adopted, known as 

Shannon’s Relative Entropy (ShEn): 

                                                      
1 Entropy is described here in binary, but the concepts can extend to b-ary representation (in our case substituting b=2)  

X is completely deterministic  X is completely random 

𝐻0(𝑋) = 0 ( 1a ) 𝐻(𝑋) = ∑𝑝𝑖

𝑁

𝑖=1

log2 (
1

𝑝𝑖
) ( 1b ) 𝐻𝑁(𝑋) = log2(𝑁) ( 1c ) 

  𝑆ℎ𝐸𝑛 =
𝐻(𝑋)

𝐻𝑁(𝑋)
 ( 2 )  
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This normalized form gives the amount of information as a ratio of the highest information a random 

variable of 𝑁 possible values can carry, thus ranges from 0 to 1. 

Typically for a given dataset of length 𝐿, the probability density function is unknown and thus needs to 

be estimated. The simplest way of estimating is to first list all unique values within this dataset, then 

count the times that each value appears within the data set, and then divide the counts with the total 

number of samples in the dataset. The resulting quotients can be used as the probabilities for each value 

and the estimate of Entropy provides the average number of bits required to represent a sample (or the 

average level of uncertainty in a sample). However, this estimation biases every probability by a leading 

order of −
𝑁−1

2𝐿
 [10], which can be significant for small 𝐿 and thus result in inaccurate ShEn. 

2.2 Approximate Entropy 

Approximate Entropy (ApEn) [11] is actually an approximation of a measure of complexity, first 

introduced by Kolmogorov when he introduced ‘Complexity Theory’ in 1965 [12]. Kolmogorov’s aim 

was similar to Shannon’s in that they were both trying to provide a means for ‘measuring the size of 

information’ [13], but Kolmogorov used a non-probabilistic approach, and focused on the message (a 

sequence in a data stream) itself, rather than its source (the random variable X, in Shannon’s Theory). 

Kolmogorov’s notion of information size takes into consideration the regularity of data within a 

sequence and complexity is a measure of this regularity – Complexity increases as regularity decreases 

(or as the sequence becomes disorderly, which is often described as increasing entropy).  Intuitively, to 

consider complexity in this way, it is useful to consider two example messages as shown in Figure 1: 

 

        

 

Figure 1: Example Comparing Complexities in Simple Messages 

Message 1: abdcadcbdcabbdac 

Message 2: abcdabcdabcdabcd 

Complexity is higher in 

message 1 compared to 

message 2 
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Based on Kolmogorov’s work, the Kolmogorov-Sinai (K-S) Entropy was introduced by Sinai [13]. It 

basically measures the regularity between subsequences in a message. As regularity increases, K-S 

Entropy decreases.  One of the widely-used algorithms for the calculation of the K-S Entropy was given 

by Eckmann and Ruelle and is called the E-R Entropy [14]. This calculation is summarised below. 

Consider a dataset of 𝐿 contiguous samples {𝑢(𝑛): 1 ≤ 𝑛 ≤ 𝐿} as depicted in the example in Figure 2.   

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of the foundation  of Approximate Entropy Calculations, bease of E-R Entropy 

Given a positive integer 𝑚 representing the compared window length (also known as the embedding 

dimension), form a set of subsequences: 

 
𝒙𝑚(𝑖), 1 ≤ 𝑖 ≤ 𝐿 − 𝑚 + 1 ( 3 ) 

where 𝒙𝑚(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚 − 1)} . This creates 𝐿 − 𝑚 + 1  subsequences, each 

containing 𝑚 contiguous data points. 

 

 

 Message (L=8): abcdabdc Encoding:   a:  00 (0)  b:  01 (1)  c:  10 (2)  d: 11 (3) 

  
 

 

 

𝐹𝑜𝑟 𝑚 =  2: 

𝑥2(1) =  𝑎 𝑏  

𝑥2(2) =  𝑏 𝑐  

𝑥2(3) =  𝑐 𝑑  

𝑥2(7) =  𝑑 𝑐  

⋮ 

𝒅  =  0 0  
 1 1  
 2 2  

 3 1  
⋮ 

  
 

 

  1 1  
 0 0  
 1 1  

 2 0  
⋮ 

  
 

 

  2 2  
 1 1  
 0 0  

 1 1  
⋮ 

  
 

 

  3 1  
 2 0  
 1 1  

 0 0  
⋮ 

⋯ 

𝐶2
1(1)=

5

7
 𝐹𝑜𝑟 𝑟 = 1,   𝐶𝑚

𝑖(𝑟): 𝐶2
2(1)=

6

7
 𝐶2

3(1)=
6

7
 𝐶2

7(1)=
6

7
 

Φ2(1) =
1

7
∑ ln 𝐶𝑖

2(1)

7

𝑖=1

 

Φ2(𝑟) = (𝐿 − 𝑚 + 1)−1 ∑ ln 𝐶𝑖
𝑚(𝑟)

𝐿−𝑚+1

𝑖=1
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Define the distance between two subsequences as: 

This represents the maximum difference between any two corresponding elements in the subsequences, 

indicated in the figure as the circled elements.  Now, define 𝐶𝑖
𝑚(𝑟) to be the number of matching 

subsequences normalized to the total number of subsequences: 

In (( 5), matching subsequences are defined as those whose distances are less than a fixed threshold 𝑟. In 

the calculation of 𝐶𝑖
𝑚(𝑟) , subsequence 𝒙𝑚(𝑖)  is called the template, the cases such that 

𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) ≤ 𝑟 are called template matches, and 𝑟 is called the filtering dimension.   Finally, the 

function: 

can be calculated to estimate the average natural logarithm of the probability that two subsequences of 

length 𝑚 are similar.  Repeating this with 𝑚 + 1 instead of 𝑚 provides the E-R Entropy: 

As indicated in equation (( 7), the E-R Entropy requires a set of infinitely long data, which is impractical. 

Also, an 𝑟 that approaches zero implies that any noise may cause two identical pattern to be considered 

not identical and thus results in inaccurate results.  To overcome these impracticalities, Approximate 

Entropy fixes the values 𝑚 and 𝑟 to some reasonable choice to approximate E-R Entropy.  With the 

parameters fixed,  ApEn is defined as: 

 
𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) = max{|𝑢(𝑖 + 𝑘) − 𝑢(𝑗 + 𝑘)|} , 0 ≤ 𝑘 ≤ 𝑚 − 1 ( 4 ) 

 
𝐶𝑖

𝑚(𝑟) =
number of 𝒙𝑚(𝑗) such that 𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) ≤ 𝑟 

𝐿 − 𝑚 + 1
    1 ≤ 𝑗 ≤ 𝐿 − 𝑚 + 1 ( 5 ) 

 

Φ𝑚(𝑟) = (𝐿 − 𝑚 + 1)−1 ∑ ln𝐶𝑖
𝑚(𝑟)

𝐿−𝑚+1

𝑖=1

 ( 6 ) 

 
E − R Entropy = lim

𝑟→0
lim

𝑚→∞
lim
𝐿→∞

 Φ𝑚(𝑟) − Φ𝑚+1(𝑟)  ( 7 ) 
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For a given dataset of 𝐿 points, ApEn is implemented by defining the statistic: 

The calculation of ApEn requires pre-determined values of parameters 𝑚 and 𝑟. As concluded by Pincus 

and Goldberger [15], large values of 𝑚 allows the joint probabilistic dynamics of the process to be 

reconstructed more strictly, and a data length of at least 10𝑚, or preferably 20𝑚 is needed. Moreover, 𝑟 

is recommended to be a specific percentage of the standard deviation (SD) of the subject dataset. A 

frequent choice of these two parameters is 𝑚 = 2 and 0.1 SD ≤ 𝑟 ≤ 0.2 SD.  

The ApEn is approximately the negative average natural logarithm of the conditional probability that if 

two subsequences of length 𝑚 are similar, the subsequences of length 𝑚 + 1 from the same dataset will 

remain similar. It inherited the ability of reflecting system complexity by using measured data from the 

Kolmogorov complexity. However, this statistic is biased by self-matching - that is, the cases where 

𝑗 = 𝑖 in equation ( 5) are included. Removing the self-matches is not trivial, since it would introduce the 

possible problem caused by calculating the natural logarithm of zero. Self-matching causes two major 

limitations. First, the value of ApEn is highly dependent on the length of dataset and decreases 

uniformly with the decreasing of the data length. Thus, the effects of self-matching become more 

influential with smaller datasets.  Second, it negatively influences relative consistency. That is, if the 

ApEn of one dataset is higher than that of another dataset, ApEn is supposed to remain higher when the 

parameters ( 𝑚 , 𝑟 )change.  In general ApEn does not, and self-matching makes worsens this 

inconsistency.  

The lack of consistency mainly happens when there are changes in parameter 𝑟. This limitation was 

discussed in depth by Chon et al. [16]. They demonstrated that ApEn of a signal could be either higher 

or lower than another signal as 𝑟 changes, no matter if the other signal has higher complexity or not. To 

 ApEn(𝑚, 𝑟) = lim
𝐿→∞

 Φ𝑚(𝑟) − Φ𝑚+1(𝑟)  ( 8 ) 

 
ApEn(𝑚, 𝑟, 𝐿) = Φ𝑚(𝑟) − Φ𝑚+1(𝑟) ( 9 ) 
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accommodate this, the concept of maximum ApEn was introduced, which is the maximum value of 

ApEn with respect to the change of 𝑟. Instead of calculating ApEn for a series of 𝑟 values,  Chon et al. 

also introduced an approach for calculating a common value 𝑟max  to estimate maximum ApEn, based on 

a relationship between the ratio of short-term and long-term variability. 

2.3 Sample Entropy 

Since ApEn is highly dependent on the length of dataset and lacks relative consistency, Richman and 

Moorman developed Sample Entropy (SampEn) [17] to improve on it. It is different from the ApEn 

mainly in two ways. First, self-matches are excluded. This cancels the bias caused by self-matching in 

ApEn. However, this may result in a zero count of matches which would introduce 𝑙𝑛(0) into the 

intermediate calculations of ApEn. This is dealt with by taking the logarithm only at the last step of 

calculation. Second, the template-wise approach is not employed to estimate the conditional 

probabilities. 

The first step of SampEn calculation is to form a set of subsequences: 

Note that there are 𝐿 − 𝑚 subsequences formed instead of 𝐿 − 𝑚 + 1 as in the calculation of ApEn, in 

order to ensure both 𝒙𝑚(𝑖) and 𝒙𝑚+1(𝑖) are defined for 1 ≤ 𝑖 ≤ 𝐿 − 𝑚 . Then 𝐵𝑖
𝑚(𝑟) and 𝐴𝑖

𝑚(𝑟)are 

defined as: 

 
𝒙𝑚(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚 − 1)}, 1 ≤ 𝑖 ≤ 𝐿 − 𝑚 ( 10 ) 

 
𝐵𝑖

𝑚(𝑟) =
number of 𝒙𝑚(𝑗) such that 𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) ≤ 𝑟 

𝐿 − 𝑚 − 1
    1 ≤ 𝑗 ≤ 𝐿 − 𝑚, 𝑗 ≠ 𝑖 ( 11 ) 

 
𝐴𝑖

𝑚(𝑟) =
number of 𝒙𝑚+1(𝑗) such that 𝑑 𝒙𝑚+1(𝑖), 𝒙𝑚+1(𝑗) ≤ 𝑟 

𝐿 − 𝑚 − 1
    1 ≤ 𝑗 ≤ 𝐿 − 𝑚, 𝑗 ≠ 𝑖 ( 12 ) 
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In the above two equations, self-matches are not counted. Then the averages of template matches for 𝑚 

and 𝑚 + 1 are defined as: 

and finally the SampEn can be estimated by following statistic: 

SampEn shows better relative consistency and less dependent on the length of datasets compared to 

ApEn [17]. 

2.4 Fuzzy Entropy 

Developed by Chen et al. [18], Fuzzy Entropy (FuzzyEn) utilises the concept of “fuzzy sets” proposed 

by Zadeh [19]. In an ordinary set, the membership of its elements is definite. However, in a fuzzy set, 

every element is allocated with a degree of membership, i.e. a factor describes how likely this element 

may belong to the fuzzy set. Given the details in the previous sections, it is clear that both ApEn and 

SampEn determine the similarity of subsequences based on the Heaviside functions. That is, for any two 

subsequences, they can only be considered as absolutely matched or unmatched based on a pre-filter-

level 𝑟. In FuzzyEn, the degree of match between two subsequences is computed by an exponential 

function, which allows the similarity to have continuous values, and has maximum value when two 

subsequences are identical. 

Like SampEn, the first step of FuzzyEn is to form subsequences: 

 

𝐵𝑚(𝑟) = (𝐿 − 𝑚)−1 ∑ 𝐵𝑖
𝑚(𝑟)

𝐿−𝑚

𝑖=1

 ( 13 ) 

 

𝐴𝑚(𝑟) = (𝐿 − 𝑚)−1 ∑ 𝐴𝑖
𝑚(𝑟)

𝐿−𝑚

𝑖=1

 ( 14 ) 

 
SampEn(𝑚, 𝑟, 𝐿) = − ln

𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
 ( 15 ) 

 
𝒙𝑚(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚 − 1)} − 𝑢0(𝑖), 1 ≤ 𝑖 ≤ 𝐿 − 𝑚 ( 16 ) 
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It is worth noting that the baseline of each subsequence 𝑢0(𝑖) is removed so that the comparison is based 

on the shape of two subsequences rather than their absolute values. The baseline is defined as: 

Given the removal of baseline, the distance between two subsequences is now defined as: 

The next step is where the most significant difference compared to SampEn exists. The similarity of 

subsequences in FuzzyEn is not determined by Heaviside function. Instead, an exponential function is 

employed for calculating the continuous similarity degree: 

In ( 19),  𝑛 and 𝑟 determine the shape of the exponential function.  To be exact, the represent the position and 

gradient of its boundary respectively as depicted in Figure 3. 

 

Figure 3: Plot of Heaviside function and exponential function 𝜽(𝒅 𝒙𝒎(𝒊), 𝒙𝒎(𝒋) , 𝒓) and exponential function 

𝐞𝐱𝐩  −(𝒅𝒊𝒋
𝒎 )

𝒏
/𝒓  when calculating the degree of similarity versus parameter 𝒓 [20] 

 

𝑢0(𝑖) =
1

𝑚
∑ 𝑢(𝑖 + 𝑗)

𝑚−1

𝑗=0

 ( 17 ) 

 
𝑑𝑖𝑗

𝑚 = 𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) = max{| 𝑢(𝑖 + 𝑘) − 𝑢0(𝑖) −  𝑢(𝑗 + 𝑘) − 𝑢0(𝑗) |} , 0 ≤ 𝑘 ≤ 𝑚 − 1 ( 18 ) 

 

𝐷𝑖𝑗
𝑚(𝑛, 𝑟) = exp [−

(𝑑𝑖𝑗
𝑚)

𝑛

𝑟
] ( 19 ) 
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In ApEn and SampEn, the similarity of two subsequences is determined by Heaviside function, with a 

filter-level 𝑟 specified. This rule can be expressed as: 

The Heaviside function has a rigid boundary. That is, all distances less than 𝑟 have the same contribution 

to the membership of similarity, while all distances larger than 𝑟 have no contribution. However, this 

may lead to completely different contributions for two highly similar subsequences while two 

subsequences with apparently different distances may have the same contributions.  

Take for example, the contributions of three distances d1, d2 and d3 in Figure 3.  The figure shows a 

scenario in which d1 has no contribution according to the Heaviside approach, while a distance d2 that is 

very close to d1 has maximum contribution, and d3 has the same maximum contribution as d1 has 

although the difference between them is obviously larger than that between d1 and d2. The rigid 

boundary causes both ApEn and SampEn to be highly sensitive to the change of 𝑟. A small change in 

parameter 𝑟 can possibly lead to a significant change in the result. 

In practical scenarios, processes are often full of imprecision and uncertainty,  so the boundary of a set 

and the membership of an element should not be considered rigid. The concept of “fuzzy sets” proposed 

by Zadeh in [19] introduced “membership degree”, which has the ability to handle this kind of 

membership by introducing a degree of membership that describes how likely a pattern may belong to a 

certain set. The exponential function as delineated in equation 19 employed in the calculation of 

similarity is a simple fuzzy function. It calculates the degree that a distance can be considered as a 

member of class “similarity”, and then the contributions of d1, d2 and d3 in Figure 3 become more 

logical.  Using the exponential function, the contribution of each distance changes continuously when 𝑟 

changes. As a result, a minor change in 𝑟 will not have huge impact on the result of FuzzyEn. 

 
𝜃(𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) , 𝑟) = {

1,   if 𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) ≤ 𝑟

0,   if 𝑑 𝒙𝑚(𝑖), 𝒙𝑚(𝑗) > 𝑟
  ( 20 ) 
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The remaining steps for calculating FuzzyEn are similar to those of SampEn, which involve taking the 

average of the average probability that one subsequence is similar to the other ones, as shown below: 

Like SampEn, FuzzyEn excludes self-matches. Finally, the FuzzyEn can be estimated by the statistic: 

which is equivalent to: 

Chen et al. [18] [20], experimented with FuzzyEn to various data streams including (1) independent, 

identically distributed (i.i.d) random numbers of different lengths, (2) sinusoidal signals of different 

frequencies, (3) MIX processes, (4) the distinguishing of Logistic systems contaminated by different 

noise levels, and (5) the characterization of sEMG signal records of various forearm actions.  They 

demonstrated that FuzzyEn possesses stronger relative consistency, less dependence on data length, freer 

parameter selection, and better tolerance to noise. 

3 Entropy applied to sEMG 

The purpose of this investigation was to explore the potential of entropy for use in sEMG assessment. 

As a first step towards this exploration, the reliability of entropy metrics was examined.  Reliability in 

this context means test-retest repeatability.  If we are to use changes in entropy as a means for 

interpreting changes in the state of sEMG, the entropy metric we choose must be relatively repeatable to 

across muscles in the same state. 

 

Φ𝑚(𝑛, 𝑟) = (𝐿 − 𝑚)−1 ∑ [(𝐿 − 𝑚 − 1)−1 ∑ 𝐷𝑖𝑗
𝑚

𝐿−𝑚

𝑗=1,𝑗≠𝑖

]

𝐿−𝑚

𝑖=1

 ( 21 ) 

 
FuzzyEn(𝑚, 𝑛, 𝑟, 𝐿) = lnΦ𝑚(𝑛, 𝑟) − lnΦ𝑚+1(𝑛, 𝑟) ( 22 ) 

 
FuzzyEn(𝑚, 𝑛, 𝑟, 𝐿) = − ln

Φ𝑚+1(𝑛, 𝑟)

Φ𝑚(𝑛, 𝑟)
 ( 23 ) 
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3.1 Generation of sEMG Records 

The generation of sEMG records was achieved using the simulation tool Myosim, which was developed 

by MacIsaac et al. [21], and made available from the Institute of Biomedical Engineering, University of 

New Brunswick. 

Myosim is a matlab tool which implements a model based on the one proposed by Gonzalex-Cueto and 

Parker [22], in which the generation of a single fibre action potential (SFAP) measured at skin surface is 

described as the convolution of a source with a tissue filter applied. As suggested by Plonsey [23], a bi-

directional propagating double-layar differential source is adopted. The filtering function employed in 

Myosim is based on the work of Dimitriv and Dimitrova [24], with field distribution properties, 

conduction velocity, depth of fibre, location of innervation point, and location of left and right 

terminations of fibre with respect to electrode location taken into consideration.   The geometric 

parameters are visually depicted in Figure 4: 

 

 

 

 

 

 

Figure 4:  Parameters used in modeling sEMG: (𝑰𝑷: motor neuron inervation point, 𝑰𝒁: innervation zone defining the 

limits of 𝑰𝑷, 𝒅: channel distance from innervation point, 𝒔: electrode spacing, 𝒓: fibre depth, [𝒓𝒎𝒊𝒏, 𝒓𝒎𝒂𝒙]:  depth 

dispersion boundaries defining the limits of 𝒓, 𝑳𝑳:  fibre length from proximal end to innervation point (bounded by 

left termination dispersion), 𝑳𝑹:  fibre length from distal end to innervation point (bounded by right termination 

dispersion) 

Once the SFAPs are generated, the motor unit action potentials measured at the skin surface are 

generated by summing multiple SFAPs. Since the signal generated by a specific motor unit is identical 
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during each innervation process, an MUAP train can be formed by convolving the same MUAP with a 

series of impulses, which simulates the timing of innervation process. Finally, to generate the sEMG 

record, a number of independently generated MUAP trains are summed. Figure 5 shows a dialog box 

provided in Myosim for setting all necessary parameters to simulate a sEMG recording. 

 

 

Figure 5: Screenshot of Myosim Parameters for sEMG Generation 

Fifty sEMG records simulating contractions of the brachial biceps (muscle in the upper arm) were 

generated for testing the performance of the entropy metrics under investigation. Model parameters used 

for generating the simulated recordings are shown in Figure 5. The physiology parameters illustrated in 

the left-half of Figure 5 are typical parameters for a brachial bicep [25] [26]. All physiology parameters 

were allowed to vary within a specified range, thus the 50 sEMG records were treated as records of 50 

different participants, each of them having similar but unique physiology parameters. 
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As illustrated in the right-half of Figure 5, a single differential (or bipolar) configuration was adopted for 

the electrodes, which were placed at 30mm and 40mm respectively, measured from the mid-point of 

innervation zone. By placing the electrode channel at this location, end-effects were minimized and the 

possibility of electrodes being placed over innervation zone was avoided. Simulated recordings were 

meant to be taken from the perspective of the surface of the bicep, so the perspective parameters were 

set to simulate placing the measuring channel at 0 degrees. Sampling frequency and signal duration were 

set to 5kHz and 1s respectively. As a result, each generated record has a data length of 𝐿 = 5000. 

Figure 6 and Figure 7 depict records 28 and 30. These figures demonstrate the expected similarities and 

differences between simulated signals with parameters set as described. Note that the shapes and 

amplitudes may vary heavily from record to record. 

 
Figure 6: Plot of sEMG Record 28 

 
Figure 7: Plot of sEMG Record 30 
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Records generated by Myosim have data points of continuous magnitudes. However, practical recorded 

data is usually available in digital form which has been quantised into a particular resolution. Since a 

resolution of 12-bit is commonly used for sEMG, the data was quantised before any entropy metrics 

were applied with a resolution of 12-bit. This was achieved by pre-defining a list of (212 − 1) levels 

uniformly distributed between the limits of the full-scale range and then rounding each sample to the 

closest value in this list. The full-scale range was considered as the full dynamic range of a specific 

sEMG record, which simulates the common practice of setting gains in the acquisition instrumentation 

in a way that the sEMG can vary within its complete dynamic range to improve the signal-to-noise ratio. 

3.2 Performance of the Entropy Metrics 

Although each of the 50 sEMG records used in this work had unique parameters, they were all records 

modeling the brachial biceps, thus the amount of information contained in the records should not differ 

largely from each other. That is, the results among different records should be relatively repeatable. 

Thus, an entropy metric can be considered reliable if the variance across the 50 records is low. In this 

section, a comparison of ShEn, ApEn, SampEn and FuzzyEn applied to the 50 sEMG records is 

presented. 

3.2.1 Preliminaries 

Table 1 lists the parameters required to compute each of the entropy metrics together with the default 

values used in the estimations for each metric. 

 

ShEn ---  

ApEn embedding dimension 𝑚 =  2 

SampEn filter-level/boundary position † 𝑟 =  0.4 

FuzzyEn record length 𝐿 = 5000 

 boundary gradient † 𝑛 = 2 
 †FuzzyEn only 

Table 1:  Default Parameter Values used in Investigation 
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As concluded in [15], the choice of 𝑚 should ensure that the data length is greater than 10𝑚. As the 

length of sEMG records is 5000, the value of 𝑚 cannot exceed 3 since 5000 is less than 104. However, 

preliminary studies indicated that performance achieved when 𝑚 = 3  does not show significant 

improvement though the computation time was doubled compared to when 𝑚 = 2. Thus, the value of 𝑚 

was chosen to be 2 for the purpose of this exploration. Parameter 𝑟 (and 𝑛 for FuzzyEn) were selected 

through trial and error. 

In addition to applying ApEn with a constant value of parameter 𝑟, the concept of ApEnmax introduced 

by Chon et al. in [16] was tested. Values for ApEnmax were obtained using two methods: the first one 

simply calculated ApEn across the 50 sEMG records with incrementing values of 𝑟 and then for each 

sEMG chose the result (ApEnmax) from the r-value which produced the maximum result. The other 

method chose 𝑟 by calculating an 𝑟max and used that as the value in the ApEnmax calculation for each 

sEMG.  The 𝑟max value was calculated utilising the variance of differences between all two adjacent 

elements of the dataset (SD1, short-term variability), the variance of the whole dataset SD2 (long-term 

variability) and the length of dataset 𝐿. The 𝑟max is calculated with 

3.3 Results 

Figure 7(a) shows variance in entropy metrics ApEn, SampEn, FuzzyEn across all 50 records for 

different values of 𝑟 . Since the variance of FuzzyEn did not decrease significantly when 𝑟 > 0.4 , 

𝑟 = 0.4 was chosen for FuzzyEn. The value of 𝑟 = 0.4  for both ApEn and SampEn was also chosen. 

According to the results, continuing to increase 𝑟  can further decrease the variance, but this is not 

preferred since the larger r gets, the more chance we have of mistakenly identifying two subsequences as 

a match.  Using the same line of reasoning and the results depicted in Figure 7(b), 𝑛 = 2 was set. 

 

𝑟 =
(−0.036 + 0.26√SD1/SD2)

√𝑁/10004
 when 𝑚 = 2 ( 24 ) 
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(a)       (b) 

Figure 8: Variance of ApEn, SampEn and FuzzyEn applied to the 50 sEMG records with various 𝒏 and 𝒓 

Table 2 gives the means, variances and coefficient of variation across the 50 records for all the entropy 

metrics investigated. The coefficient of variation is a normalised measure of variation. This 

normalisation made it possible to compare metrics. In this sense, ShEn provides best performance, 

followed closely by ApEnmax estimated with 𝑟 varying across sEMG.   

        Entropy 

        Measures 

 

Statistics 

ShEn 
ApEn 

(2, 0.4, 5000) 

Maximum ApEn 

(various 𝑟) 

(2, r, 5000) 

Maximum ApEn 

(calculated 𝑟) 

(2, r, 5000) 

SampEn 

(2, 0.4, 5000) 

FuzzyEn 

(2, 2, 0.4, 5000) 

Mean 0.9033 0.1327 0.5324 0.4553 0.0590 0.0409 

Variance 0.0028 0.0022 0.0018 0.0141 8.4804 × 10−04 7.1731 × 10−5 

Coefficient 

of 

Variation 
0.0583 0.3537 0.0803 0.2607 0.4934 0.2069 

Table 2:  Means, Variance and Coefficient of Variantion of Investigated Entropy Metrics when Applied to the 50 

sEMG Records 

Figure 6 to 11 gives the bar charts showing the results of these metrics applied to the 50 sEMG records. 

All of their scales range from 0 to 1 so that variation across the 50 data sets can be compared between 

metrics visually. The only exception is Figure 9. As a result of the baseline removal during the formation 

of subsequences, the values obtained with FuzzyEn is markedly lower than other entropy metrics, thus 

the variation among results may not be illustrated in comparison to the others. 
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Figure 9: ShEn of the 50 sEMG Records 

 

Figure 10: ApEn(2, 0.4, 5000) of the 50 sEMG Records 

 

Figure 11: Maximum ApEn (varying 𝒓) (2, r, 5000) of the 50 sEMG Records 
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Figure 12: Maximum ApEn (calculated 𝒓) (2, r, 5000) of the 50 sEMG Records 

 

Figure 13: SampEn(2, 0.4, 5000) of the 50 sEMG Records 

 

Figure 14: FuzzyEn(2, 2, 0.4, 5000) of the 50 sEMG Records 
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Figure 9 depicts ShEn measured in each of the 50 simulated sEMG recordings. Since the data length 

 𝐿 = 5000 is relatively long, it can be inferred that the error caused by the estimation of probabilities is 

negligible and the values depicted correctly reflect the entropy contained in a record, interpreted as a 

measure of the quantity of information. The mean across these data is high (𝑢̂𝑆𝐻 = 0.9033 which is 

close to 𝑚𝑎𝑥(𝑢𝑆𝐻) = 1), indicating that the source of these signals is highly random. As expected for 

signals derived from the same random source, the variance of results obtained with ShEn is low. 

Figure 10-Figure 12 show the results for estimating ApEn. The plots (and statistics in Table 2) show that 

the criteria used to choose 𝑟 may have an effect on the values we measure, and their variance.  

Comparing Figure 10 (simple ApEn) with Figures Figure 11-Figure 12 (maximum ApEn), we see that 

entropy, interpreted as a measure of complexity in the data, is 3-4x lower in the simple metric.  We also 

see that variance is about 8x higher when estimating maximum ApEn with an 𝑟 calculated by formula 

(Figure 12) vs choosing an 𝑟 which yields a maximum result (Figure 11) for each sEMG, even though 

their mean values are relatively similar.  As a result, the latter approach to calculating ApEn hails as the 

most repeatable ApEn metric for estimating entropy, as confirmed by the lowest coefficient of variation 

(4x lower than the simple ApEn).   This is not surprising since choosing an 𝑟 specifically to produce a 

maximal result for each particular data set ensures that the mean will be relatively high and adds an extra 

condition to constrain the values, ensuring that the variance will be relatively low.  However, searching 

for 𝑟max is very time-consuming. Using 0.05 as the searching step and searching from 0.05 to 1 increases 

computational time by a factor of 20 when compared to computing simple ApEn. 

SampEn and ApEn are both measures of complexity, but their approach to estimating complexity differs 

so a direct comparison between means cannot be made.  Typically, these estimators are compared in 

terms of their sensitivity to changes in their own internal parameters (𝑚 and 𝑟 ) and data length (𝐿).  

SampEn generally performs better in this regard as evidenced by the work of Richman et al [17], but this 

kind of comparison was beyond the scope of this work.  Instead,  the focus here was on repeatability 
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across data streams of similar complexity.   The results depicted in Table 2 indicate that SampEn and 

ApEn are similar in this context, when  comparing coefficients of variation for SampEn with the simple 

ApEn metic.  However, SampEn shows a reduction in performance  similar to the simple ApEn metric  

(6x for SampEn) when comparing coefficients to that of maximum ApEn calculated with the varying r 

value. 

Finally, in terms of relative variability as measured by the coefficient of variation, FuzzyEn performed 

on par with the simple ApEn and SampEn. However, a major dropback is its computation time. For the 

50 sEMG records tested in this paper, FuzzyEn requires roughly twice the time required to calculate 

simple  ApEn.  

4 Conclusion & Future Works 

In this paper, several entropy metrics were described and applied to sEMG.  Entropy as a measure of 

information size was explored in the context of ShEn, and entropy as a measure of complexity was 

explored in the context of ApEn, SampEn, and FuzzyEn.   

By applying each metric to 50 brachial bicep sEMG records generated with a simulation tool,  

repeatability could be compared among metrics.  In doing so, ShEn and maximum ApEn emerged as the 

most repeatable metrics and therefore merit further investigation.  Caution must be applied when 

considering the utility of maximum ApEn however.  If the intention of applying the entropy estimator is 

to distinguish between states in a muscle, letting 𝑟 vary between data sets may adversely affect the 

estimator’s sensitivity to differences of interest.  Thus, estimating maximum ApEn with a calculated 𝑟 

value, may be a better alternative when entropy as a measure of complexity is relevant. 

This work represents a first step in exploring the potential of entropy for use in sEMG assessment.  

Results indicate that entropy can be estimated with sufficient repeatability in similar sEMG data to 

warrant further investigation.  As a next step, its ability to distinguish between differing sEMG data will 
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be explored.  In particular, we are interested in examining entropy for its ability to detect crosstalk.  

Crosstalk results from unavoidably measuring the electrical activity of surrounding muscles along with 

the activity from the muscle of interest.  As such, it is difficult to distinguish between these electrical 

sources.  We are hoping that entropy increases when the number of muscles contributing to the 

measurement increases.  If this is the case, we may be able to use high entropy as an indicator for 

crosstalk. 
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